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LE’lTER TO THE EDITOR 

Transparency effects in cluster-cluster aggregation with linear 
trajectories 

R Jullien 
Laboratoire de Physique des Solides, Universite Paris-Sud, Centre d’Orsay, 91405 Orsay, 
France 

Received 18 July 1984 

Abstract. Two hierarchical models of cluster-cluster aggregation whose aggregates follow 
random linear trajectories with (model I)  or without (model 11) random impact parameter 
are investigated numerically. The difference of the fractal dimension D of the clusters as 
a function of space dimension d is attributed to transparency effects which are less important 
in model 11. A simple argument is given which suggests that, in contrast with model I, 
model I1 should not have an upper critical dimension. 

A model of cluster-cluster aggregation (Meakin 1983a, Kolb et al 1983) has been 
proposed recently and appears to be quite appropriate to describe flocculation of 
aerosols or colloids (Weitz and Oliveria 1984, Schaefer et al 1984). In contrast with 
a previous model of particle-cluster aggregation (Witten and Sander 198 1, Meakin 
1983b, c), clusters of particles, as well as single particles, are allowed to diffuse together 
and sticking occurs mainly between clusters of almost the same size. Rediscovering 
an old idea by Sutherland and Goodarz-Nia (1971), Botet et al (1984a) introduced a 
simplified, hierarchical, version of this model, in which clusters of 2,4, . . . 2k. . . 
particles are built iteratively by always sticking together two independent clusters of 
strictly the same number of particles. The remarkable simplicity of the hierarchical 
formulation allows some results to be derived analytically, such as the upper critical 
dimension (Ball and Witten 1984). 

In this letter, a further simplification of the cluster-cluster aggregation model is 
considered by using random linear trajectories, instead of Brownian trajectories. Two 
models, called I and 11, with or without random impact parameters, respectively, are 
studied. The fractal dimension D of the clusters is estimated numerically for the first 
time, up to d = 8, in the case of model 11. The difference between the curves D ( d )  is 
attributed to transparency effects which in model I become more important, for high 
dimensions. Then to explain these results, I give a simple argument which predicts 
that, in contrast with model I, model I1 should not have an upper critical dimension. 

The two models are motivated by completely different experimental situations. 
Model I still considers, as the original model, that the diffusion is of Brownian nature 
but with a mean free path larger than the largest size of the clusters. Thus the relative 
trajectory is an arbitrary straight line, completely random in space. On the other hand, 
model I1 corresponds to a situation where, in addition to the short ranged interactions, 
which ensure the irreversible sticking, there exists some other, strong, long ranged 
interactions which forces the two coalescing clusters to follow a linear trajectory going 
through their centres of mass. However, in both cases, I assume that the clusters stay 
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rigid and do not rotate during their relative motion. Both models have already been 
studied in the context of particle-cluster aggregation (Bensimon er a1 1983, Meakin 
1983d, for model I ;  Meakin 1983e, Jullien er a1 1984, for model 11) leading always to 
almost compact structures (D - d) .  In the context of cluster-cluster aggregation, model 
I, already introduced by Sutherland and Goodarz-Nia (1971) has been also investigated 
recently (Meakin 1984, Ball and Jullien 1984) and some preliminary results on model 
I1 have been reported (Botet er a1 1984b). 

In both models, successive collections of clusters are built iteratively, starting from 
Po individual spherical particles. Let us assume that, at step k, a collection of Po/2k 
clusters, of N = 2k particles each, is available. These clusters are grouped into P0/2k+1 
pairs of clusters. Then one considers each pair of clusters successively. Let us call 
(1) and (2) the two clusters of the pair, whose centres of mass are denoted GI and 
Gz, respectively. This pair generate a new cluster of 2N = 2k+1 particles as follows. 

( 1 )  The two clusters are independently, randomly rotated around their respective 
centres of mass, in the whole d-dimensional space. 

(2) Cluster ( 1 )  is considered as fixed with GI positioned at the origin. 
(3) One chooses a point, say H, randomly located on a large sphere centred around 

GI. This defines a random direction in space: HC,. 
(4) Then the two models differ in the way one chooses the initial position G: of 

cluster (2). In model 11, cluster (2) is initially positioned such that G: is exactly at 
H. In model I instead, one chooses G: randomly located in a ( d  - 1)-dimensioned 
hyperplane, perpendicular to the random direction HG, at the point H. The vector 
HG: then represents the random impact parameter (which is strictly zero in model 11). 

I 

I1 

n 
Figure 1. Sketch of the different collision processes of model I and 11. 

( 5 )  Then cluster (2) is moved from its initial position along a trajectory parallel 
to HC, until a collision occurs, i.e. until the minimum distance between the centre of 
any particle of (1)  and the centre of any particle of (2) becomes equal to the sphere 
diameter, which is taken here as the unit length. In both models, if cluster (2) does 
not collide with cluster ( l ) ,  the trial is abandoned and another trajectory is chosen, 
independently from the previous trial (i.e. we go back to step 3) and this is repeated 
as often as it is necessary until a collision occurs. 

(6) The reunion of the two clusters, just after the collision, then forms a cluster of 
the new collection. 
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The radius of gyration of each cluster is defined as: 

where ri locates the ith particle inside the cluster and where the double sum runs over 
all particles. Numerically, R k  is estimated, for size N, by averaging R k  over all the 
clusters of the kth collection. The fractal dimension of the clusters, defined by: 

RN- "ID, N+CO 

can be estimated by extrapolating to N + CO, an effective N-dependent fractal dimension 
D$)( N),  obtained when comparing two successive collections: 

Dzk)( N) = h l 2 / h (  R ~ N / R N ) .  

I have also calculated another finite-size estimate: 

D L ~ , ' ( N ) = ~ ~ / ~ { ( R : N -  1/4)/Rk}. 

Obviously this estimate has the same limit for N + CO but, as shown by Ball and Jullien 
(1984), its size variations are considerably smaller, leading to better extrapolations, as 
shown by numerical results on Brownian and linear (model I) trajectories. 

The numerical results for D!d( N) and D$)( N) as a function of N-' are shown 
in figure 2 for model I1 with space dimension d ranging from 2 to 8. I have considered 

1 

a50 
N -' a25 

Figure 2. Plot of DL2 (broken curves) and 0:" (full lines) as a function of  N - '  for model 
11. 
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2048 trials for all dimensions, starting with Po = 5 12 particles, stopping after 6 iterations, 
so that 16 384 independent clusters of 64 particles were reached. 

It can be seen from figure 2 that D$)( N) allows a better extrapolation to N + 00 

than D!d(N). However, in contrast with model I (Ball and Jullien 1984), one observes 
some size dependence which increases with d. This is a first indication that the main 
hypothesis used to introduce Dii)( N) is Ball and Jullien ( l984), which is the existence 
of an upper critical dimension above which D$)( N) would become size independent, 
might be wrong for model 11. 

Table 1. Numerical results for the facta1 dimension. 

d 2 3 4 5 6 7 8 

1.51*0.03 1.91*0.03 2.22k0.04 2.47i0.05 2.720.3 
1.5620.03 2.0620.04 2.53*0.05 2.97*0.06 3.4620.08 3.92*0.l 4.35h0.15 

The extrapolated D values for model 11, with error bars, are listed in table 1, and 
plotted against d in figure 3, where they are compared with the previous results for 
model I (Ball and Jullien 1984) up to d = 5 .  Another point, for d = 6, with a larger 
error bar, obtained with Po = 512 but with only 20 trials, has been added. The broken 
line on the same figure indicates the condition of transparency between a fixed cluster, 
of fractal dimension 0, and a moving cluster, of fractal dimension D + d,, where d, 
is the fractal dimension of the trajectory (d, = 1, here). This condition is written as 
D + ( D + l ) = d ,  i.e. 

D = f(d - 1)  

(Ball and Witten 1984). As long as the clusters have a non-zero probability of sticking, 
their fractal dimension must stay above this broken line. The numerical results on 

O I  

Figure3. Curve D ( d )  for model I and 11. The broken 
line indicates the condition of transparency D =  
f ( d -  1). The star locates the upper critical 
dimension for model I, expected from the Suther- 
land’s ghost model (Ball and Witten 1984). Above 
d,, D must be constant and equal to D, = In 41 In 2 = 
3.42. 

t I 

2 4 6 8 
d 

Figure 4. Plot of the logarithm of the CPU time T (  d )  
needed to obtain a given number of successful col- 
lisions, up to N = 64 (reduced by the corresponding 
time for d = 2) as a function of d. 
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model I strongly support the existence of a characteristic dimension d,, above which 
the clusters will interpenetrate freely. Then if one assumes that the ‘Sutherland’s ghost’ 
model proposed by Ball and Witten (1984) and Kolb (1984) whose fractal dimension 
is D8=1n4/1n(3/2)=3.42, is valid above d,, D ( d )  must reach the broken line at 
d ,  = 20 ,  + 1 = 7.84. This is not inconsistent with the numerical results, if one assumes 
some sigmoidal form for D ( d ) .  Unfortunately, in the case of model I, it is difficult 
to obtain numerical points for larger d since, due to increasing transparency effects, 
many more trials become necessary until a collision occurs. This is clearly shown in 
figure 4 where we have plotted the logarithm of the CPU time as a function of d. The 
dramatic increase observed in model I must be attributed to these transparency effects. 

Such effects are considerably less pronounced in model I1 where d = 8 can be 
reached without difficulty. The curve D ( d )  stays above and roughly parallel to the 
broken line, suggesting that there is no upper critical dimension. Note that the 
numerical results for 0 are near D = f(d + l ) ,  although I have no justification for such 
a simple formula. 

To explain these results, I now present a simple argument which assumes spherical 
symmetry and self-similarity of the clusters, for any d. Let me consider two colliding 
clusters whose centres of mass are G,  and Gz just after the collision (see figure 1).  
The radius of gyration of the new cluster is 

8NZR:,=C ( r i - r j ) ’ .  
4.i 

The sum can be divided in four parts according to the fact that i and j can belong to 
the same old cluster, (1) or (2), or not: 

8N2R:N=2N2Rk+2N2Rk+2  (ril-rj2) Z 
L J 2  

I use the equality 

r .  - r .  = r .  - r 
S I  l2 t I  cI - (rj2- rc2) - 6 

where 

6 = rG2 - rG, 

is the vector joining the centres of mass after the collision. Then, using the spherical 
symmetry hypothesis to calculate the sum and averaging over all the different ways to 
collide for a given direction of the trajectory, one gets 

R:, = R k  +a(Sz). 

As any characteristic length, 6 must scale like the radius of gyration R, for sufficiently 
large clusters. This is a direct consequence of the self-similarity hypothesis. In model 
I, the average is taken over all directions and one has, simply 

(a2) - A ,  R” (model I). 

In model 11, the average must be done along a single direction in space, say x, and 
one has instead 

( 6’) - A, R”, = ( A2/ d ) R i  (model 11). 

In these formulae A ,  and Az are some unknown’numbers which, a priori, depend on 
d. However, assuming that self similarity holds up to d +CO, we will suppose that 
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these constants stay finite (different from 0 or 03) when d -$ 03. This leads to: 

In 4 
D -  - constant (model I )  

In( 1 +A,/4)  d - m  

d (model 11). 
41n4 - -  In 4 

D -  
In( 1 +A2/4d) d - m  A2 

Thus, while D is expected to saturate in high dimension for model I (as is confirmed 
by the Sutherland ghost model with A, = 2 for d > dJ, D must increase indefinitely 
with d, without an upper critical dimension, in model 11. 

In conclusion the existence, or not, of an impact parameter in cluster-cluster 
aggregation with linear trajectory have important consequences in high dimensions. 
Both numerical results and a simple argument suggest that the model without impact 
parameter should not have an upper critical dimension. Thus the consideration of 
long range interactions between clusters affect their fractal dimension. Note however 
that this change remains small in 3d ( D  - 2.06, instead of 1.91). I hope that this work 
will suggest some further analytical investigations on such models. 

I acknowledge discussions with R Botet, M Kolb and R C Ball. I thank J Noguks and 
D Taupin (Centre de microdensitomktrie du CNRS, Orsay, France) and also the CCVR 
(Ecole Polytechnique, Palaiseau, France) for providing computing facilities. 

References 

Ball R C and Jullien R 1984 Preprint 
Ball R C and Witten T A 1984 J. Star. Phys. to be published 
Bensimon D, Domany E and Aharony A 1983 Phys. Rea. Lett. 51 1394 
Botet R, Jullien R and Kolb M 1984a J. Phys. A: Math. Gen. 17 L75 
- 1984b Preprint 
Jullien R, Kolb M and Botet R 1984 J. Physique 45 395 
Kolb M 1984 Preprint 
Kolb M, Botet R and Jullien R 1983 Phys. Rea. Lett. 51 1123 
Meakin P 1983a Phys. Reo. Lett. 51 1 1  19 
- 1983b Phys. Reo. A 27 604 
- 1983c Phys. Rev. A 27 1495 
- 1983d Phys. Rev. A 27 2616 
- 1983e J. Colloid. Interface Sci. 96 415 
- 1984 Phys. Rea. A 29 997 
Schaefer D W, Martin J E, Wiltzius P and Cannel D S 1984 Phys. Rev. Lett. 52 2371 
Sutherland D N and Goodarz-Nia I 1971 Chem. Eng. Sci 26 2071 
Weitz D A and Oliveria M 1984 Phys. Reo. Leu 52 1433 
Witten T A and Sander M 1981 Phys. Reo. Lett. 47 1400 


